M1.		(a) breed together;if fertile offspring, then same species;	2	
	(b)	variation already present due to mutations; different environmental conditions / selection pressures; selection of different features and hence different alleles; different frequency of alleles; separate gene pools / no interbreeding;	4 max	
	(c)	selection of mate dependent on colour pattern; prevents interbreeding / keeps gene pools separate;	2	[8]
M2.		 (a) gene located on X / Y/ one sex chromosome; (allow gene on X or Y chromosome, not X and Y) 	1	
	(b)	(i) black;	1	
		 (ii) X^GX^g; (lose this mark if the wrong genotype is given for the female in (iii)) (must show X chromosomes to gain the mark) 	1	
		correct parent gametes (X ^g and Y from male, X ^G and X ^g from female); correct offspring genotypes (X ^g X ^g , X ^G X ^g , X ^G Y, X ^g Y);		
		correct link of offspring genotypes with phenotypes; X ^g X ^g black female X ^g X ^g tortoiseshell female X ^g Y ginger male		
		X [®] Y black male (correct gametes, offspring genotypes and link with phenotypes based on incorrect parent genotype = 3 marks)	3	

	(c)	cori	 Y dd; rect male kitten genotypes (X^gY Dd and X^gY dd); rect link of kitten genotypes with phenotypes; (ignore female kittens) X^gY Dd black X^gY dd grey (correct kitten genotypes and phenotypes based on incorrect parent genotype = 2 marks) 	3	
				5	[9]
M3.		(a)	discontinuous, as discrete groups;	1	
	(b)	(i) (ii)	<pre>in woods low percentage of banded yellow shells / in grassland/hedgerows high percentage of banded yellow shells; (gains 2 marks) low percentage of yellow shells in woods/higher percentage of yellow shells in grassland/hedgerows / low percentage of banded shells in woods/ higher percentage of banded shells in grassland/hedgerows / distribution similar in grassland and hedgerows; (gains 1 mark) due to natural selection; in their habitat they are better camouflaged ; therefore less predation (by birds); so higher proportion of these survive;</pre>	2	
			and pass on their alleles/genes;	4 max	[7]
M4.		(a) whi	mutations; ch are different/at different positions in the gene;	2	
	(b)	(i)	either dominant or recessive allele;	1	
		(ii)	aʰaʰ BB, aʰaBB, aʰaʰ Bb, aʰaBb;; (allow 1 mark for 2 or 3 correct answers)	2	
		(iii)	temperature lower at extremities; enzyme active/ not denatured;	2	

(c) if allele A is present (normal) tyrosinase/enzyme is produced, so it does not matter what other allele is present / explanation of why heterozygote is same phenotype as double dominant in terms of enzyme produced; phenotype/rabbit is black as both have alleles A and B;

[9]

2

4

4

M5. (a) variation present in (original population);
 (copper) tolerant individuals more likely to survive;
 (these reproduce and) pass on genes (to next generation/offspring);
 more/increase (in frequency) of copper tolerance alleles/genes;

- (b) 1. reproductively isolated / no interbreeding (due to different flowering times);
 - 2. conditions different for two populations / different selection pressures;
 - 3. different features or plants are selected or survive /different adaptations;
 - 4. populations become (genetically) different;
 - 5. unable to produce fertile offspring;

[8]

M6. 1 4 year cycles; (a) predator/stoat peaks after prey/lemming; 2 3 lemmings increase due to low numbers of stoats/available food; 4 more food for stoats so numbers increase; 5 increased predation reduces number of lemmings; 6 number of stoats decreases due to lack of food/starvation; 6 (b) smaller populations have fewer different alleles/more homozygosity/less heterozygosity/smaller gene pool/lower genetic variability; migrants bring in new alleles/increase gene pool; 2 (c) geographical isolation of populations; variation present in population(s); different environmental conditions; different selection pressures/different phenotypes selected; change in genetic constitution of populations/gene pools/allele frequency; (two populations) so unable (to breed) to produce fertile offspring; 4 max [12]

M7.		(a)	(i)	black;	1	
		(ii)	choco	late;	1	
	(b)	Bb	Ee, B	bE , be and be ; bee, bbee, bbEe; 2 yellow: 1 chocolate;	3	
	(c)	(i)		enzyme coded for when no dominant / E allele; aeomelanin not converted – (remains yellow);	2	
		(ii)		Ilele results in enzyme producing eumelanin; allele - more eumelanin deposited in hairs;	2	[9]

M8. (a) males are XY and females XX / males have one X chromosome and females two X chromosomes; males only have one allele (of the gene) present / recessive allele always expressed; colour blindness is masked in heterozygote / female needs 2 recessive alleles to be colour blind;

- (b) (i) $5 hh X^{b} Y;$ $6 - Hh X^{B} X^{b};$
 - (ii) $h X^{b}$, h Y, and $H X^{B}$, $h X^{B}$, $H X^{b}$, hX^{b} ;
 - (iii) 1/8 or 12.5% or 0.125;;

either genetic diagram to show genotypes Hh X^b X^b, Hh X^BY, hh X^B X^b, hh X^BY, HHX^bX^b, Hh X^bY, hh X^b X^b; hh X^bY; 1/8; or P (boy) = 0.5, P (colour blind) = 0.5, P (white streak) = 0.5; $(0.5 \times 0.5 \times 0.5 =) 0.125;$

[7]

2

1

1

3

2

2

[8]

[8]

(ii) grandparent genotypes: [X^gY] [X^gX^g] [X^gY]; gametes: [X^G and X^g, or X^G only] [X^g and Y] [X^g] and Y]; parents genotypes: [X^GY] [X^gX^g] gametes: [X^G and Y] [X^g] daughter: [X^GX^g]; (*all correct = 3 marks*); (*max 2 if no distinction between pairs of gamete genotypes, e.g. comma, space or circle*); (*allow omission of gametes clearly not involved in next generation*); (*all males XY and females XX = 1 mark, if no other marks*);

- (iii) nil;
 X chromosome, without G allele, inherited from mother / Y must be inherited from father, not X⁶;
- (b) X and Y chromosomes are different sizes / shapes; chromatids unable to line up and form bivalent / only short pairing region / most of length not homologous;

M10. (a) genetic variation/ variation in gene/allele(s) in populations for cyanide production; colder/below 0°C (January) areas, cyanogenic plants die in this cold/acyanogenic survive; non-cyanogenic allele/gene passed on more often/its frequency increases; warmer (January) areas cyanogenic plants at advantage, because of less herbivore selection pressure/feeding; so cyanogenic survive more often to pass on cyanogenic allele/gene.

 (b) large (and equal) number of quadrats in each area; (reject several) random sampling method, described; (accept described 'systematic' method) percentage cover/point hits per quadrat/count plants; mean/average value for each area; statistics test to see if differences significant.

4 max

4 max

M11. (a) is always expressed(in the phenotype) / produces (functional) proteins;

(b) codominance;

1

	(c)	Gam Offsp Offsp	etes- pring geneotypes - H pring pheneotypes - H	nornless roan	_∕ hhC ^R C [™] horned	HCW		orned te	4	
	(d)	(i)	sperm(with more DI X is larger / has mo			iosome;				
			Ū	U					2	
		(ii)	female for milk / ma	les for me	at / male	e or fema	ale fo	r breeding;	1	[9]
M12.	game offspi corre	etes co ring go ct ger	tal genotypes correct prrect for candidate's enotypes correct and otypes derived from bability = 1/4 / 0.25 / 2	s parental l colourblir cand's ga	genotyp nd male ametes <u>a</u>	es; identifie				[4]
M13.		(a)	Mutation/(spontaned	ous) chang	je in a g	ene/char	nge ir	n DNA;	1	
	(b)	(i)	Correct answer: 0/6 OR					2 marks		
			Use of 56 and $\frac{176}{2}$	or 88 / <u>56</u>	<u>× 2</u> or 1	12 <u>and</u> 1	176;	1 mark	max 2	
		(ii)	64;						1	
	(c)	(i)	Correct answer = 42 OR 0.42;; OR	2%;;; (onl <u>y</u>	y if $q^2 = 0$	0.49)		3 marks 2 marks		
			$p + q = 1 / p^2 + 2pq$	+ q ² = 1 / j	p = 1– 0	$.7 / q^2 =$	0.49	/ q = 0.7;		
			Answer = 2pq / use	of approp	riate nur	nbers;		2 marks	max 3	

 Parental genotypes correct: both W^RW^s (ACCEPT 'RS') 	
AND	
W ^s (ACCEPT 'S') /gamete from each parent;	
 W^sW^s (ACCEPT 'SS') / offspring formed and identified as susceptible; <u>If different symbols:</u> 	
 defined : max 2 marks not defined max 1 mark (= pt.2) 	2
1. Description: decrease + rate of decrease slows with time;	
Explanation: Any three from:	
 Resistant rats/rats with W^R allele survive <u>OR</u> susceptible / W^sW^s rats killed 	
3. (more likely) to pass on W^R allele to offspring/less likely to pass on W^s / higher proportion of next generation has W^R allele/lower proportion has W^s	•
4. Chance of mating with $W^{s}W^{s}$ is reduced / $W^{s}W^{s}$ becomes rare;	
 Rate of selection against W^s slows because W^s allele is in heterozygotes; 	max 4
No selective advantage / All genotypes equally fertile;	
Large population; Random mating; (IGNORE 'random fertilisation') No mutation;	
No emigration/immigration;	max 2
	 (ACCEPT 'RS') AND W^s (ACCEPT 'S') /gamete from each parent; 2. W^sW^s (ACCEPT 'SS) / offspring formed and identified as susceptible; If different symbols: defined : max 2 marks not defined max 1 mark (= pt.2) 1. <u>Description</u>: decrease + rate of decrease slows with time; Explanation: Any three from: 2. Resistant rats/rats with W^R allele survive <u>OR</u> susceptible / W^sW^s rats killed 3. (more likely) to pass on W^R allele to offspring/less likely to pass on W^s/ higher proportion of next generation has W^R allele/lower proportion has W^s 4. Chance of mating with W^sW^s is reduced / W^sW^s becomes rare; 5. Rate of selection against W^s slows because W^s allele is in heterozygotes; No selective advantage / All genotypes equally fertile; Large population; Random mating; (IGNORE 'random fertilisation') No mutation; No emigration/immigration;

[15]

M14. (i) female XX, male XY; Y <u>shorter/smaller</u> than X;

> (ii) haemophilia is a recessive allele; defective allele (gene) present on X, missing from Y; male 0.5(50%/½) probability of haemophilia; female 0/no chance; (0.25(25%/¼) first baby having haemophilia);

 $\begin{array}{l} \textit{or} \\ \mathsf{X}^{\scriptscriptstyle\mathsf{H}}\mathsf{X}^{\scriptscriptstyle\mathsf{h}} \quad \mathsf{X}^{\scriptscriptstyle\mathsf{H}}\mathsf{Y}; \\ \mathsf{X}^{\scriptscriptstyle\mathsf{H}}\mathsf{X}^{\scriptscriptstyle\mathsf{H}} + \; \mathsf{X}^{\scriptscriptstyle\mathsf{H}}\mathsf{X}^{\scriptscriptstyle\mathsf{h}} + \; \mathsf{X}^{\scriptscriptstyle\mathsf{H}}\mathsf{Y} + \; \mathsf{X}^{\scriptscriptstyle\mathsf{h}}\;\mathsf{Y}; \\ \mathsf{X}^{\scriptscriptstyle\mathsf{h}}\mathsf{Y} \text{ is a sufferer} \end{array}$

M15.	(a) Parents genotypes Aabb aaBb ;		
	Gametes formed Ab ab aB ab ; if parental genotypes wrong allow correctly derived gametes only		
	Offspring genotypes AaBb Aabb aaBb aabb		
	and		
	Offspring phenotypes 1 Walnut ; 1 Pea : 1 Rose : 1 single ; Just one mark for offspring genotypes and phenotypes If parents not diploid, no marks gained		
	n paronio not alpiona, no manto gamoa	3	
(b)	Correct answer 0.6, however derived, scores 2 marks Wrong answer, but evidence of correct working (e.g. $p^2/q^2 = 0.36$) scores 1 mark		
		2	[5]
M16.	(a) (i) Only seen in males / not in females;	1	
	(ii) Unaffected parents/mother \rightarrow child with M.D./ (1 x)2 \rightarrow 5 / (3 x) 4 \rightarrow 11 / 8 (x 9) \rightarrow 13;	1	

PMT

2

3 max

[5]

(b) $5 = X^{d}Y$ $6 = X^{D}Y$ $7 = X^{D}X^{d} \underline{AND} X^{D}X^{D}$ $8 = X^{D}X^{d}$:: All 4 correct = 2 marks 2 or 3 correct = 1 mark max 2 (c) 1/4 / 0.25 / 25% / 1:3 / 1 in 4; (NOT '1:4') 1 [5] M17. group of organisms with similar features; (a) can (interbreed to) produce fertile offspring; 2 (b) directional selection; any TWO from selection against one extreme / for one extreme; against broadest beaks in B and narrowest beaks in A / for narrowest in B and broadest in A; whole distribution / range / mean / mode / median is shifted towards favoured extreme: 3 max [5] M18. Two, as white blood cells are diploid cells/alleles are present (a) (i) on each chromosome of an homologous pair/one maternal and one paternal; 1 (ii) A and B (reject I^{A} and I^{B}) 1 1 in 8/ 1/8 / 12.5%/ 1:7/ 0.125; (b) (*Reject 1:8*) parents $I^{A}I^{O}$ and $I^{B}I^{O}$; give 1:3/ ¼ / 1 in 4/ 25% probability of blood group A and half will be male; (accept 2nd and 3rd points from a suitable genetic diagram) 3 [5]

Page 9 of 17

PMT

M19.		(a)	 Accurate means without error/free from mistakes when callipers used; Reliable means that figure can be reproduced when measurement Repeated/show little variation about true value; 	2	
		(ii)	If data unreliable, there will be a wide range of values; Large standard deviation; The higher the figure on the top line of the equation, the greater The percentage measurement error;	2 max	
	(b)	(i)	Plot graph of mean skull breadth against mean cranial volume/ scatter diagram; Draw line of best fit / calculate coefficient of correlation; Look for figures close to +1 or -1;	2	
		(ii)	Skull breadth is a linear measurements/can be measured with a single measurement/less prone to error/Cranial volume more difficult to measure because;	1	
		(iii)	Could distinguish between large male polecats and small female ferrets; Little overlap in standard deviations; Mean measurements for female polecats and male ferrets are very similar;	3	
	(c)	earlie	ntists could use method suggested/protocol established in er paper (thus saving time); ings more likely to be reliable if they replicate the findings of others;	2	
	(d)	Som	e stomachs may contain more than one type of prey item;	1	
	(e)	in fev	entified bird remains small percentage of total prey/found w stomachs; ificant numbers of rabbits/rats eaten and these are pests;	2	l

M20.

(i) 1. Parents are heterozygous;

- Kittens receive white allele from parents /black cat;
 Accept carriers/carries white allele
- (ii) 1:1;

(a)

Answer must be expressed as a ratio that could be reduced to 1 : 1

1

1 max

[15]

(b) (i) Black, Chocolate, Black;

All three correct for the mark

(ii)	Parental phenotypes	Chocolate male		Black female	
	1. Parental genotypes	bb ⁱ		Bb ⁱ ;	1
	2. Parental gametes	b b ⁱ		B b ⁱ ;	1
	3. Offspring genotypes	Bb, Bb ⁱ	bb ⁱ	b ⁱ b ⁱ ;	1
	Offspring phenotypes	Black	Chocolate	cinnamon;	

Both genotypes needed for the mark.
 Allow credit if gametes are correctly derived from candidate's incorrect parental genotypes.
 Genotype(s) must be with correct phenotype.

Allow credit if symbols other than B/b/b have been used correctly. Ignore genetic diagrams unless clearly annotated.

- (iii) 1. Offspring ratios are a probability/not fixed/arise by chance/
 - 2. gametes may not be produced in equal numbers/
 - 3. fertilisation/fusion of gametes is random/
 - 4. small sample;
- (iv) 1. Possible if parents homozygous/ bb;
 - Don't know genotype of chocolate cat / chocolate cat could be homo- or heterozygous / chocolate cat could be bb or bbⁱ;
 - 3. Two chocolate cats could give cinnamon kittens;

[9]

1

2 max

Μ	21. (b)	And t p + q 0.01		5 max	
				4 max	[9]
М	22.	(a)	Normal sight;	1	
	(b)		have at least one ${\bf N}$ allele as she has the condition and pass on an ${\bf n}$ allele to her normal sighted children;	2	
	(c)	One	marks for correct answer of $\frac{1}{4}$ / 0.25 / 25%; mark for incorrect answer that determines probability of next having night blindness as $\frac{1}{2}$ / 0.5 / 50%;	2 max	[5]
М	23.	(a) (ii)	 (i) Avoid bias/can only apply statistical test/Hardy-Weinberg expression to randomly collected data; Give credit for any method which would ensure collection of a random sample from trees e.g. beating tray; Q Note that specification does not require specific knowledge therefore the use of specific terminology such as "beating tray" is not required here. 	1	

(b)	One	o marks for correct answer of 49% red and 51% black; e mark for incorrect answer in which p/frequency of black allele/B is htified as 0.3 and q/frequency of black allele/B as 0.7;	2	
(c)	(i)	Increase in the frequency of the red/b allele from autumn to spring/in all years; Therefore frequency of black/B allele decreased and fewer black ladybirds in spring; Q The terms allele and gene must be used correctly but penalise only once	2	
	(ii)	Black ladybirds would become more active so respiration rate increases; Deplete food reserves;	2	[8]
M24.	(a)	(i) Two marks for correct answer of 4;;		
		One mark for calculation involving 0.2×0.2 or 0.04 ;	2	
	(ii)	0.2/ the frequency remains the same; Reject if wrong frequency is quoted	1	
(b)	(i)	1. There is a <u>probability</u> of 5%/0.05;		
		 That difference in frequencies / difference in results are due to <u>chance</u>; Accept 95% probability changes in frequencies not different as a result of chance 	2	
	(ii)	1. Directional;		
		 2. The recessive allele confers disadvantage/ the dominant allele confers advantage/more likely to survive / reproduce; Assume "it" to refer to the recessive allele 2. References to selection do not gain credit as the term is in the question. Allow reference to phenotype / enzyme functionality (instead of allele) when describing advantage/disadvantage. 	2	[7]

- M25. (a) (i) Only expressed/shown (in the phenotype) when homozygous/two (alleles) are present/when no dominant allele/is not expressed when heterozygous;
 - (ii) Both alleles are expressed/shown (in the phenotype);

Allow both alleles contribute (to the phenotype).

(b) (i) Evidence (not a mark)

3 and 4/two Rhesus positives produce Rhesus negative child/children/7/9;

Explanation (not a mark)

<u>Both</u> Rhesus positives/3 and 4 carry recessive (allele)/are heterozygous/if Rhesus positive was recessive, all children (of 3 and 4) would be Rhesus positive/recessive;

Do not negate mark if candidate refers to gene rather than allele. Answers including correct and incorrect evidence = zero marks evidence and explanation.

2

1

1

(ii) <u>Evidence</u> (not a mark)

3 would not be/is Rhesus positive/would be Rhesus negative;

Explanation (not a mark)

3 would receive Rhesus negative (allele) on X (chromosome) from mother/3 could <u>not</u> receive Rhesus positive (allele) from mother/3 would not receive Rhesus positive (allele)/ X (chromosome) from father/1/3 will receive Y (chromosome) from father/1;

OR

Evidence (not a mark)

9 would be Rhesus positive/would not be/is Rhesus negative/ 8 and 9/all daughters of 3 and 4 would be Rhesus positive;

Explanation (not a mark)

As 9 would receive X chromosome/dominant allele from father/3;

Do not negate mark if candidate refers to gene rather than allele. One mark for evidence and one mark for explanation linked to this evidence.

Any reference to allele being on Y chromosome negates mark for explanation.

(c) Correct answer of 48(%) = 3 marks;;;

 $q^{2}/p^{2}= 16\%/0.16 / p/q = 0.4;$

Shows that 2pq = heterozygotes/carriers;

Final answer of 0.48 = 2 marks Allow mark for identifying heterozygotes if candidate multiplies incorrect p and q values by 2.

[9]

3

M26. (a) The frequency/proportion of <u>alleles</u> (of a particular gene);

Will stay constant from one generation to the next/over generations/no genetic change over time;

Providing no mutation/no selection/population large/population genetically isolated/mating at random/no migration;

The three principles for marking are: What feature What happens to it Providing . . . Accept: genotype/explanation of genotype Accept: alternative wording, e.g. there is no gene flow/genetic drift for genetically isolated.

(b) White/deaf cats unlikely to survive/selected against;

Will not pass on allele (for deafness/white fur) (to next generation)/will reduce frequency of allele;

Accept: alternative wording, e.g. have a disadvantageous phenotype Neutral: will not breed

 (c) In Paris/London frequencies (of these alleles) add up to more than 1; Can be shown by correct figures to be more than 1 e.g. 0.71 + 0.78 = 1.49 Accept: more than 100%

1

2

(d) Two marks for correct answer of 44(.22);;

One mark for incorrect answer in which p/frequency of H determined as 0.67 and q/frequency of h as 0.33 $\,$

OR

Answer given as 0.44(22);

[8]